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Note 

The Computation of Borel-Type Sums Arising in Scattering Theory 

1. INTRODUCTION 

It is often necessary, for instance in scattering theory [l], to calculate sums of the 
form 

for a wide range of values of the positive variable x, where {s,} is some fixed convergent 
sequence. 

We use the notation 
sn c-) f(x) (2) 

to indicate relationship (1) and we call f the Bore1 transform of the sequence (~3. 
It is known that if 

lim s, = s n-m then liif(x) = s; (3) 

see Knopp, [2, p. 4721. From this point of view the relationship s, t) f is a summation 
process which can be used to compute the (generally unknown) value of the limit of 
the sequence S, . 

The problem presented by sums such as (1) when they occur in physics is usually 
the inverse of this: s, is known (generally it is a correlation function) and the task is 
to compute the functionf. 

When x is small, the computational problems are not severe. When x is large, the 
computation off from its defining series presents grave overflow-underllow problems, 
and the task is decidedly nontrivial. In many important cases, a technique for 
computing f may be obtained by asymptotic analysis. 

In what follows we use the notation 

r, = s - s, , the remainder sequence, 

fN(x) = s - ecz 2 2, 
n=o . 

(4) 
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RN(x) = -e-x f G, the remainder function, 
n=N+1 . 

(&,) la = r(a + n) 
nol) ’ 

n = 0, 1,2 ,... (Pochhammer’s symbol). 

The notation for all special functions in this paper is that of [3]. 
By linearity of the “t)” relationship we have 

fN(x) + RN(x) = s - e-” 2 G 
n=O . 

m xn(s - s,) = s - e-x 2 
7X=0 n! (5) 

=s-s+e-x~ m % = f(x). 
n=o . 

2. COMPUTATION OF f FOR x SMALL 

If x is not too large, fN is a good approximation toffor N suitably large. We have, 
in fact, 

I f(x) - fN(x)l = I RN(x)1 < e-” 2 
n=N+1 

w 

Using the fact that 

we have 
(tJ + u)! 2 u! v! ) 

= rNhSdx), 

(7) 

(8) 

Thus for a given x we will have m decimal accuracy even for the most slowly 
convergent S, if N is such that 

x”+y(N + 1) ! < 4 x 10-m-1, (9) 
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N suitably large. The use of Stirling’s formula shows that we must have approximately 

x-=c+l e ic 
77(N + 1) 

2 1 
l/2 10-m-1 l/(N+l) 

I (10) 

Table I indicates how large x may be taken for a given accuracy and a given N. 

TABLE I 

Values of a for Given N and ma 

m 

N 3 4 5 6 7 8 9 10 

10 2.0 1.6 1.3 1.0 0.8 0.7 

IS 3.6 3.1 2.7 2.3 2.0 1.7 I.5 

20 5.4 4.8 4.3 3.8 3.4 3.1 2.8 2.5 

30 9.0 8.3 7.7 7.2 6.7 6.2 5.7 5.3 

50 16.3 15.6 14.9 14.3 13.6 13.0 12.5 11.9 

70 23.7 23.0 22.2 21.5 20.8 20.2 19.5 18.9 

loo 34.8 34.0 33.2 32.5 31.7 31.0 30.3 29.6 

a To compute f(x) to m-digit accuracy using&(x) take x < a. 

3. LARGE x 

The sequence s,, often has an asymptotic or convergent representation of the form 

s, N s f A” [$ + g + --I , X#O,jX[ <l,n-+oo. (11) 

In such cases, an asymptotic representation may be obtained forf(x) as x + co. 
To start, we seek to determine the Bore1 transform of a simple sequence, A”/@ + u)~, 

a > 0, k = 1,2 ,... . 

a w>” (4, 
*g ,, n!(u + k), 

= z @(a, a + k, xX) = f’“‘(x). 

For large X, f(“)(x) has the asymptotic behavior 

f’k’($ - ??!!?2 m 6% (1 - 47 W-’ Wk zo r! 
+ F(a) e-” cos(m2) 

W)W)” 
y (4, (1 - k)r (--1y (xh)-r 

1 9 x--t co, 
7=ll r. 

(12) 

(13) 

see [3, Vol. I, p. 2781. Note that the second term above is finite (convergent). 
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The most important case is the case when a = 1. Then all terms but the Grst of the 
first sum vanish and we have the exact representation 

vk=~~(l-k)~(-l)‘(xA)-~-l=O(~), x+ 00. 

We now use the fact that 

(14) 

where the Ak,, may be written in terms of the generalized Bernoulli polynomials as 
follows (see Table 11) 

Akss = (k” 1 ;) I&(S), k < s, s = 1, 2, 3 ,.... (16) 

See Nijrlund [4, p. 2611. Ak,s can be conveniently calculated from 

A k,s = coefficient of xk-r in (x + 1)(x + 2) **a (x + s - l), s = 1) 2, 3 )... . 

(17) 
See [4, p. 1471. Thus 

uk = o(e-‘lx), 

TABLE II 

(18) 

k 

s 1 2 3 4 5 6 7 

1 1 
2 1 1 

3 2 3 1 

4 6 11 6 1 

5 24 50 35 10 1 

6 120 274 225 85 15 1 

7 720 1764 1624 735 175 21 1 
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the series being an asymptotic series. (The above estimates can easily be justified in 
our result (19)-(20) below by first assuming that s, is a series of terms Xn/(n + l)k 
and then rearranging in terms h”/n”. The present computations seem to be more 
straightforward.) 

Now using representation (11) and invoking the linearity of the Bore1 transform 
we find that if 

then 

where 

e, = h- c At&, 
k=l 

Cl = 9 ) c, = Cl ; c2 , c, = 2c, + F + c3 ) 

e 
6 

= w+ llC2 + 6C3 + c, 

A4 
).... 

When s, has a known factorial series development 

s, = s + h” [ (2 1) + (n+ $f2) + -*I 
with, say, 

(1% 

(20) 

(21) 

(22) 

(23) 

then all series are convergent and we have 

s, c--) s + ez(A-l) f D,(xX)-~ - e-5 f Dk*(xhi)-“, 
k==l k=l 

(24) 

Dk* zz f +, I xh ( > u. 
TSO 

An interesting case is the case when Dk = (-/?)“, fl > 0. Then 

s 
n 

H s _ fle-$(eAs - e-E) 
<B + 4 ’ 

and setting h = 1 gives 

@Cl, n + 1, -B) f-) (x + Be-~-Wx + /3. 

(25) 

(26) 

This Bore1 transform has a close relationship to some transforms occurring in turbulent 
scattering theory. 
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4. EXAMPLES 

Consider the following incoherent scattering function for a surface with an expo- 
nential correlation function: 

vK% b) = e-a fl & [I + -$I-““, 

a = [ko(cos 8, + cos 8)]2, (27) 

/I = @(sin 19, + sin S)]” 

where 13, is the angle the position vector of the transmitter makes with the vertical, 
8 the angle the position vector of the receiver makes with the vertical, (T the radar 
cross section, k the radar wavelength, and a the correlation length of wave. 

s n = u + (kv~2)1-3’2 = _L #P + .... -- 
n= n2 n4 

WehaveA = 1,s =O,and 

Cl = c, = cs = a-. = 0, 
(29) 

c,= 1, c, = $ /3, c,=~p, -35 
G= 16 - (OS,.... 

Thus 

d(%B)--$+;+ ll--p + 5o--pB+ .,.) (Y--t a3. (30) 

For (Y = 10, /I = 1 the terms above give 0.01430 with an error 2 x 1O-s. Notice 
the expansion is not uniform in /3 and the accuracy deteriorates with increasing fi. 
In any case, a good policy for computing from asymptotic expansions is to stop 
before the smallest term; see Knopp [2]. 

Next consider the incoherent scattering function for a surface with a Gaussian 
correlation function 

where cr, /3 are as before except a is to be replaced by a/2 in (27). Then 

e-Bin 
&a=-=-- n 

* $1 P212 f1316 j..., 
n n3 n4 

so again h = 1 and 

Y(a,p)-;+q+ (8” -2;f + 4) _ <B” - 18P + 66P - 36) + . . . . 
6or4 

a--+ co. 

(32) 

(33) 
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With /3 = &-a = 10 the four terms above give ?P = 0.1057 with an error of less than 
one-half unit in the last decimal place. 

5. COMMENTS 

The transform pair given in Section 2, 

s, = @(I, 12 + 1; -F) +-+ (x + Be-2-s>/(x + B) = f(x), 

has some of the characteristics of the Gaussian correlation transform pair 

(34) 

t, = e-8/n/n f+ g(x). (35) 

For fl large and x < /3, f and g are exponentially small in x. Nevertheless, f and g 
ultimately behave algebraically in X, f = 1 + o(l), g = (l/x)[l + o(l)] as x --+ co. 
Thus there is a transitional x-region in which f and g move from exponential behavior 
to algebraic behavior. 

The graph of g given in [l] reflects this, the graph becoming increasingly steep as 
fi increases in the neighborhood of x = 10. 
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