Note

The Computation of Borel-Type Sums Arising in Scattering Theory

1. Introduction

It is often necessary, for instance in scattering theory [1], to calculate sums of the form

$$
\begin{equation*}
f(x)=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} s_{n} \tag{1}
\end{equation*}
$$

for a wide range of values of the positive variable x, where $\left\{s_{n}\right\}$ is some fixed convergent sequence.

We use the notation

$$
\begin{equation*}
s_{n} \leftrightarrow f(x) \tag{2}
\end{equation*}
$$

to indicate relationship (1) and we call f the Borel transform of the sequence $\left\{s_{n}\right\}$.
It is known that if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n}=s \quad \text { then } \quad \lim _{x \rightarrow \infty} f(x)=s ; \tag{3}
\end{equation*}
$$

see Knopp, [2, p. 472]. From this point of view the relationship $s_{n} \leftrightarrow f$ is a summation process which can be used to compute the (generally unknown) value of the limit of the sequence s_{n}.

The problem presented by sums such as (1) when they occur in physics is usually the inverse of this: s_{n} is known (generally it is a correlation function) and the task is to compute the function f.

When x is small, the computational problems are not severe. When x is large, the computation of f from its defining series presents grave overflow-underflow problems, and the task is decidedly nontrivial. In many important cases, a technique for computing f may be obtained by asymptotic analysis.

In what follows we use the notation

$$
\begin{align*}
s & =\lim _{n \rightarrow \infty} s_{n}, \\
s_{n} \wedge & =\sup _{k>n}\left|s_{k}\right|, \\
r_{n} & =s-s_{n}, \quad \text { the remainder sequence }, \\
f_{N}(x) & =s-e^{-x} \sum_{n=0}^{N} \frac{x^{n} r_{n}}{n!}, \tag{4}
\end{align*}
$$

$$
\begin{aligned}
R_{N}(x) & =-e^{-x} \sum_{n=N+1}^{\infty} \frac{x^{n} r_{n}}{n!}, \quad \text { the remainder function }, \\
(\alpha)_{n} & =\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}, \quad n=0,1,2, \ldots \text { (Pochhammer's symbol). }
\end{aligned}
$$

The notation for all special functions in this paper is that of [3].
By linearity of the " \leftrightarrow " relationship we have

$$
\begin{align*}
f_{N}(x)+R_{N}(x) & =s-e^{-x} \sum_{n=0}^{\infty} \begin{array}{l}
x^{n} r_{n} \\
n!
\end{array} \\
& =s-e^{-x} \sum_{n=0}^{\infty} \frac{x^{n}\left(s-s_{n}\right)}{n!} \tag{5}\\
& =s-s+e^{-x} \sum_{n=0}^{\infty} \frac{x^{n} s_{n}}{n!}=f(x)
\end{align*}
$$

2. Computation of f for x Small

If x is not too large, f_{N} is a good approximation to f for N suitably large. We have, in fact,

$$
\begin{align*}
\left|f(x)-f_{N}(x)\right| & =\left|R_{N}(x)\right| \leqslant e^{-x} \sum_{n \rightarrow N+1}^{\infty} \frac{x^{n}\left|r_{n}\right|}{n!} \\
& \leqslant r_{N}{ }^{\wedge} e^{-x} \sum_{n=0}^{\infty} \frac{x^{N+n+1}}{(n+\hat{N} \mid 1)!} \tag{6}
\end{align*}
$$

Using the fact that

$$
\begin{equation*}
(u+v)!\geqslant u!v! \tag{7}
\end{equation*}
$$

we have

$$
\begin{align*}
\left|f(x)-f_{N}(x)\right| & \leqslant \frac{r_{N}{ }^{\wedge} e^{-\infty} x^{N+1}}{(N+1)!} \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =r_{N} \wedge \delta_{N}(x) \tag{8}\\
\delta_{N}(x) & =\frac{x^{N+1}}{(N+1)!}
\end{align*}
$$

Thus for a given x we will have m decimal accuracy even for the most slowly convergent s_{n} if N is such that

$$
\begin{equation*}
x^{N+1} /(N+1)!<\frac{1}{2} \times 10^{-m-1} \tag{9}
\end{equation*}
$$

N suitably large. The use of Stirling's formula shows that we must have approximately

$$
\begin{equation*}
x<\frac{N+1}{e}\left\{\left(\frac{\pi(N+1)}{2}\right)^{1 / 2} 10^{-m-1}\right\}^{1 /(N+1)} \tag{10}
\end{equation*}
$$

Table I indicates how large x may be taken for a given accuracy and a given N.

TABLE I
Values of a for Given N and m^{a}

N	m							
	3	4	5	6	7	8	9	10
10	2.0	1.6	1.3	1.0	0.8	0.7		
15	3.6	3.1	2.7	2.3	2.0	1.7	1.5	
20	5.4	4.8	4.3	3.8	3.4	3.1	2.8	2.5
30	9.0	8.3	7.7	7.2	6.7	6.2	5.7	5.3
50	16.3	15.6	14.9	14.3	13.6	13.0	12.5	11.9
70	23.7	23.0	22.2	21.5	20.8	20.2	19.5	18.9
100	34.8	34.0	33.2	32.5	31.7	31.0	30.3	29.6

${ }^{\text {a }}$ To compute $f(x)$ to m-digit accuracy using $f_{N}(x)$ take $x<a$.

3. Large x

The sequence s_{n} often has an asymptotic or convergent representation of the form

$$
\begin{equation*}
s_{n} \sim s+\lambda^{n}\left[\frac{C_{1}}{n}+\frac{C_{2}}{n^{2}}+\cdots\right], \quad \lambda \neq 0,|\lambda| \leqslant 1, n \rightarrow \infty . \tag{11}
\end{equation*}
$$

In such cases, an asymptotic representation may be obtained for $f(x)$ as $x \rightarrow \infty$.
To start, we seek to determine the Borel transform of a simple sequence, $\lambda^{n} /(n+a)_{k}$, $a>0, k=1,2, \ldots$.

$$
\begin{equation*}
\frac{\lambda^{n}}{(n+a)_{k}} \leftrightarrow \frac{e^{-x}}{(a)_{k}} \sum_{n=0}^{\infty} \frac{(x \lambda)^{n}(a)_{n}}{n!(a+k)_{n}}=\frac{e^{-x}}{(a)_{k}} \Phi(a, a+k, x \lambda)=f^{(k)}(x) \tag{12}
\end{equation*}
$$

For large $x, f^{(k)}(x)$ has the asymptotic behavior

$$
\begin{align*}
f^{(k)}(x) \sim & \frac{e^{x(\lambda-1)}}{(x \lambda)^{k}} \sum_{r=0}^{\infty} \frac{(k)_{r}(1-a)_{r}(x \lambda)^{-r}}{r!} \\
& +\frac{\Gamma(a) e^{-x} \cos (\pi a)^{k-1}}{\Gamma(k)(x \lambda)^{a}} \sum_{r=0} \frac{(a)_{r}(1-k)_{r}}{r!}(-1)^{r}(x \lambda)^{-r}, \quad x \rightarrow \infty \tag{13}
\end{align*}
$$

see [3, Vol. I, p. 278]. Note that the second term above is finite (convergent).

The most important case is the case when $a=1$. Then all terms but the first of the first sum vanish and we have the exact representation

$$
\begin{align*}
\frac{\lambda^{n}}{(n+1)_{k}} & \leftrightarrow \frac{e^{x(\lambda-1)}}{(x \lambda)^{k}}+V_{k}, \tag{14}\\
V_{k} & =\frac{-e^{-x}}{\Gamma(k)} \sum_{r=0}^{k-1}(1-k)_{r}(-1)^{r}(x \lambda)^{-\tau-1}=O\left(\frac{e^{-x}}{x}\right), \quad x \rightarrow \infty .
\end{align*}
$$

We now use the fact that

$$
\begin{equation*}
\sum_{s=k}^{\infty} \frac{A_{k, s}}{(n+1)_{s}}=\frac{1}{n^{k}}, \quad n>0 \tag{15}
\end{equation*}
$$

where the $A_{k, s}$ may be written in terms of the generalized Bernoulli polynomials as follows (see Table II)

$$
\begin{equation*}
A_{k, s}=\binom{s-1}{k-1} B_{s-k}^{(s)}(s), \quad k \leqslant s, s=1,2,3, \ldots \tag{16}
\end{equation*}
$$

See Nörlund [4, p. 261]. $A_{k, s}$ can be conveniently calculated from

$$
\begin{equation*}
A_{k, s}=\text { coefficient of } x^{k-1} \text { in }(x+1)(x+2) \cdots(x+s-1), \quad s=1,2,3, \ldots \tag{17}
\end{equation*}
$$

See [4, p. 147]. Thus

$$
\begin{align*}
\lambda^{n} / n^{k} & \leftrightarrow e^{x(\lambda-1)} \sum_{s=k}^{\infty} A_{k, s}(x \lambda)^{-k}+U_{k} \\
U_{k} & =O\left(e^{-x} / x\right), \tag{18}
\end{align*}
$$

TABLE II

	k						
s	1	2	3	4	5	6	7
1	1						
2	1	1					
3	2	3	1				
4	6	11	6	1			
5	24	50	35	10	1		
6	120	274	225	85	15	1	
7	720	1764	1624	735	175	21	1

the series being an asymptotic series. (The above estimates can easily be justified in our result (19)-(20) below by first assuming that s_{n} is a series of terms $\lambda^{n} /(n+1)_{k}$ and then rearranging in terms λ^{n} / n^{k}. The present computations seem to be more straightforward.)

Now using representation (11) and invoking the linearity of the Borel transform we find that if

$$
\begin{equation*}
s_{n} \sim s+\lambda^{n}\left[\frac{C_{1}}{n}+\frac{C_{2}}{n^{2}}+\cdots\right], \quad n \rightarrow \infty \tag{19}
\end{equation*}
$$

then

$$
\begin{equation*}
f(x)=e^{-x} \sum_{n=0}^{\infty} \frac{x^{n} S_{n}}{n!} \sim s+e^{x(\lambda-1)}\left[\frac{\bar{C}_{1}}{x}+\frac{\bar{C}_{2}}{x^{2}}+\frac{\bar{C}_{3}}{x^{3}}+\cdots\right], \quad x \rightarrow \infty \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{C}_{s}=\lambda^{-s} \sum_{k=1}^{s} A_{k, 8} C_{k}, \\
& \bar{C}_{1}=\frac{C_{1}}{\lambda}, \quad \bar{C}_{2}=\frac{C_{1}+C_{2}}{\lambda^{2}}, \quad \bar{C}_{3}=\frac{2 C_{1}+3 C_{2}+C_{3}}{\lambda^{3}}, \tag{21}\\
& \bar{C}_{6}=\frac{6 C_{1}+11 C_{2}+6 C_{3}+C_{6}}{\lambda^{4}}, \ldots .
\end{align*}
$$

When s_{n} has a known factorial series development

$$
\begin{equation*}
s_{n}=s+\lambda^{n}\left[\frac{D_{1}}{(n+1)}-\frac{D_{2}}{(n+1)(n+2)}+\cdots\right] \tag{22}
\end{equation*}
$$

with, say,

$$
\begin{equation*}
\varlimsup_{k \rightarrow \infty}\left|D_{k}\right|^{1 / k}<0 \tag{23}
\end{equation*}
$$

then all series are convergent and we have

$$
\begin{align*}
& s_{n} \leftrightarrow s+e^{x(\lambda-1)} \sum_{k=1}^{\infty} D_{k}(x \lambda)^{-k}-e^{-x} \sum_{k=1}^{\infty} D_{k}{ }^{*}(x \lambda)^{-k}, \tag{24}\\
& D_{k}^{*}=\sum_{r=0}^{\infty} \frac{D_{k+r}}{r!}, \quad|x \lambda|>\sigma .
\end{align*}
$$

An interesting case is the case when $D_{k}=(-\beta)^{k}, \beta>0$. Then

$$
\begin{equation*}
s_{n} \leftrightarrow s-\frac{\beta e^{-x}\left(e^{\lambda x}-e^{-\beta}\right)}{(\beta+x \lambda)}, \tag{25}
\end{equation*}
$$

and setting $\lambda=1$ gives

$$
\begin{equation*}
\Phi(1, n+1,-\beta) \leftrightarrow\left(x+\beta e^{-x-\beta}\right) /(x+\beta) . \tag{26}
\end{equation*}
$$

This Borel transform has a close relationship to some transforms occurring in turbulent scattering theory.

4. Examples

Consider the following incoherent scattering function for a surface with an exponential correlation function:

$$
\begin{align*}
\phi(\alpha, \beta) & =e^{-\alpha} \sum_{n=1}^{\infty} \frac{\alpha^{n}}{n!n^{2}}\left[1+\frac{\beta}{n^{2}}\right]^{-3 / 2} \\
\alpha & =\left[k \sigma\left(\cos \theta_{0}+\cos \theta\right)\right]^{2} \tag{27}\\
\beta & =\left[k a\left(\sin \theta_{0}+\sin \theta\right)\right]^{2}
\end{align*}
$$

where θ_{0} is the angle the position vector of the transmitter makes with the vertical, θ the angle the position vector of the receiver makes with the vertical, σ the radar cross section, k the radar wavelength, and a the correlation length of wave.

$$
\begin{equation*}
s_{n}=\frac{\left[1+\left(\beta / n^{2}\right)\right]^{-3 / 2}}{n^{2}}=\frac{1}{n^{2}}-\frac{\frac{3}{2} \beta}{n^{4}}+\cdots \tag{28}
\end{equation*}
$$

We have $\lambda=1, s=0$, and

$$
\begin{align*}
& C_{1}=C_{3}=C_{5}=\cdots=0, \\
& C_{2}=1, \quad C_{4}=\frac{-3}{2} \beta, \quad C_{6}=\frac{15}{8} \beta^{2}, \quad C_{8}=\frac{-35}{16} \beta^{3}, \cdots \tag{29}
\end{align*}
$$

Thus

$$
\begin{equation*}
\phi(\alpha, \beta) \sim \frac{1}{\alpha^{2}}+\frac{3}{\alpha^{3}}+\frac{11-\frac{3}{2} \beta}{\alpha^{4}}+\frac{50-15 \beta}{\alpha^{5}}+\cdots, \quad \alpha \rightarrow \infty . \tag{30}
\end{equation*}
$$

For $\alpha=10, \beta=1$ the terms above give 0.01430 with an error 2×10^{-5}. Notice the expansion is not uniform in β and the accuracy deteriorates with increasing β. In any case, a good policy for computing from asymptotic expansions is to stop before the smallest term; see Knopp [2].

Next consider the incoherent scattering function for a surface with a Gaussian correlation function

$$
\begin{equation*}
\Psi(\alpha, \beta)=e^{-\alpha} \sum_{n=1}^{\infty} \frac{\alpha^{n}}{n!}\left[\frac{e^{-\beta / n}}{n}\right], \tag{31}
\end{equation*}
$$

where α, β are as before except a is to be replaced by $a / 2$ in (27). Then

$$
\begin{equation*}
s_{n}=\frac{e^{-\beta / n}}{n}=\frac{1}{n}-\frac{\beta}{n^{2}}+\frac{\beta^{2} / 2}{n^{3}}-\frac{\beta^{3} / 6}{n^{4}}+\cdots, \tag{32}
\end{equation*}
$$

so again $\lambda=1$ and

$$
\Psi(\alpha, \beta) \sim \frac{1}{\alpha}+\frac{1-\beta}{\alpha^{2}}+\frac{\left(\beta^{2}-6 \beta+4\right)}{2 \alpha^{3}}-\frac{\left(\beta^{3}-18 \beta^{2}+66 \beta-36\right)}{6 \alpha^{4}}+\cdots,
$$

With $\beta=\frac{1}{2}, \alpha=10$ the four terms above give $\Psi=0.1057$ with an error of less than one-half unit in the last decimal place.

5. Comments

The transform pair given in Section 2,

$$
\begin{equation*}
s_{n}=\Phi(1, n+1 ;-\beta) \leftrightarrow\left(x+\beta e^{-x-\beta}\right) /(x+\beta)=f(x) \tag{34}
\end{equation*}
$$

has some of the characteristics of the Gaussian correlation transform pair

$$
\begin{equation*}
t_{n}=e^{-\beta / n} / n \leftrightarrow g(x) . \tag{35}
\end{equation*}
$$

For β large and $x \ll \beta, f$ and g are exponentially small in x. Nevertheless, f and g ultimately behave algebraically in $x, f=1+o(1), g=(1 / x)[1+o(1)]$ as $x \rightarrow \infty$. Thus there is a transitional x-region in which f and g move from exponential behavior to algebraic behavior.

The graph of g given in [1] reflects this, the graph becoming increasingly steep as β increases in the neighborhood of $x=10$.

References

1. J. Jarem, "Scattering from a Turbulent Overdense Surface," Technical Monograph No. 64-08, RCA Missile and Surface Radar Division, Moorestown, N.J., December 1964.
2. K. Knopp, "Theory and Application of Infinite Series," Hafner, New York, 1951.
3. Erdély (Ed.) "Higher Transcendental Functions," 3 vol., McGraw-Hill, New York, 1953.
4. N. E. Nörlund, "Vorlesungen über Differenzenrechnung," Chelsea, New York, 1954.

Received: March 22, 1977.
Jet Wimp
Department of Mathematics
Drexel University
Philadelphia, Pennsylvania 19104

